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The transitions of the flow in an enclosed cylinder driven by the constant rotation of an
endwall, from steady axisymmetric flow to aperiodic flow characterized by intermittent
bursting dynamics where all the spatial and spatio-temporal symmetries have been
broken, is studied numerically. The problem is controlled by two parameters, the
Reynolds number and the cylinder aspect ratio. We vary the Reynolds number, fixing
the aspect ratio at a value where the primary bifurcation of the axisymmetric steady
state is to an axisymmetric periodic flow. The final transition to weak turbulence,
however, is governed by a non-axisymmetric branch of rotating waves, which is the
primary mode at lower aspect ratios, and the various branches of modulated rotating
waves associated with subsequent bifurcations from the rotating wave. We study in
detail the spatio-temporal characteristics of the various states encountered along the
way, and how the symmetry of the problem impacts on the transition dynamics.

1. Introduction
Swirling flows in cylinders driven by the rotation of one or both endwalls are

not only of fundamental interest, but also of wide practical interest. These flows
provide prototypical laboratory scale models of geophysical flows (Read 2001) and
industrial devices including rotating compressors, turbine disks, and computer hard
drives. Of fundamental interest in all of these applications is an identification and
characterization of the transition processes from laminar flow to turbulence. Despite
intensive efforts, a full understanding of the transition process in swirling flows is still
lacking.

Low-dimensional dynamical systems theory has provided much guidance and
understanding on the transition processes from steady laminar flow to turbulence,
inspired by works such as Ruelle & Takens (1971). Most studies that have focused
on relating low-dimensional dynamical systems theory to transitions in fluid flows
have been in geometrically simple flows, where the problem is well-defined, boundary
conditions well-known, and both laboratory experiments and numerical simulations
can be performed with a high degree of precision. The geometric simplicity of these
problems is associated with symmetries, and it is well-known that symmetries can lead
to dynamical behaviour which would be unexpected (i.e. degenerate) in dynamical
systems in the absence of symmetries. The transitions to complex dynamics typically
found in very-low-dimensional dynamical systems, e.g. period-doubling cascades
(Feigenbaum 1978) and Ruelle–Takens–Newhouse scenarios (Newhouse, Ruelle &
Takens 1978), are either modified or destroyed and replaced by others when the
dynamical systems have symmetries. For example, when a system has reflection
symmetry, period-doubling is inhibited (Swift & Wiesenfeld 1984). There have been
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substantial developments in our understanding of dynamical systems with symmetries
(e.g. Golubitsky, Stewart & Schaeffer 1988; Crawford & Knobloch 1991; Chossat &
Iooss 1994; Chossat & Lauterbach 2000; Golubitsky & Stewart 2002). Symmetries
typically lead to a large multiplicity of co-existing states (Coles 1965; Mullin 1999),
and if the system is governed by a large number of parameters, complicated dynamics
associated with high codimensional behaviour is very common. In order to reduce
these sources of complications, in this paper, we study the transitions to complex flow
in a geometrically very simple flow with minimal symmetry and a minimal number
of control (bifurcation) parameters.

The flow under investigation is of an incompressible fluid in a completely filled
stationary circular cylinder, of length-to-radius aspect ratio Γ = H/R, driven by the
constant rotation (Ω rad s−1) of one of its endwalls. The system has SO(2) symmetry,
invariance to rotations about the axis, and is governed by only two parameters, Γ

and the Reynolds number Re =ΩR2/ν, where ν is the kinematic viscosity. There
has been considerable interest in the limit of small Γ and where the two endwalls
can rotate independently (e.g. Schouveiler et al. 1999; Gauthier, Gondret & Rabaud
1999; Gauthier et al. 2002; Serre, Tuliszka-Sznitko & Bontoux 2004); in these cases
the transition process is dominated by the instability of the boundary layers on the
endwalls (which are thought of as disks), which results in spiral modes of very large
azimuthal wavenumber. The case of independently rotating endwalls introduces new
phenomena associated with internal shear layers (Lopez 1998; Lopez et al. 2002a;
Moisy, Pasutto & Rabaud 2003) and in the exactly counter-rotating endwalls case,
near-heteroclinic behaviour associated with the extra symmetry has been reported
(Nore et al. 2003; Nore, Moisy & Quartier 2005). In the present study, we shall focus
on moderate values of Γ and a single rotating endwall where the transition process is
dominated by the internal redistribution of angular momentum. For sufficiently large
rotations of the endwall, i.e. sufficiently large Reynolds number, a meridional flow
is established that advects angular momentum in toward the axis so as to establish
a central vortex flow. For a range of Re and Γ , this central vortex has steady
axisymmetric recirculation zones, commonly referred to as vortex breakdown bubbles
(Escudier 1984). This visually spectacular aspect of the basic state of this flow has
lead to many studies of it features (e.g. Lugt & Abboud 1987; Lopez 1990; Spohn,
Mory & Hopfinger 1998; Brons, Voigt & Sorensen 1999; Sotiropoulos & Ventikos
2001; Sotiropoulos, Ventikos & Lackey 2001; Ventikos 2002).

There have been a number of studies of the transition from laminar flow to dynamic
complexity with increasing Re, but for the most part these have been computationally
restricted to axisymmetric flows (e.g. Lopez & Perry 1992; Sorensen & Christensen
1995; Lopez, Marques & Sanchez 2001). More recently, three-dimensional nonlinear
studies have also been conducted at aspect ratios larger than is considered here
(Blackburn & Lopez 2000, 2002; Marques & Lopez 2001; Serre & Bontoux 2002). The
choice of aspect ratio in this study is partially guided by the linear stability analysis
of this axisymmetric basic state to general three-dimensional disturbances conducted
by Gelfgat, Bar-Yoseph & Solan (2001), who showed that at least for Γ ∈ [1, 3.5],
all primary instabilities of the axisymmetric basic state are Hopf bifurcations at
which stable time-periodic solutions are created. Their stability analysis showed that
for Γ about 2.7, the basic state becomes unstable to several distinct modes with
various azimuthal wavenumbers at critical Reynolds numbers which are quite close
together, and that there are a number of closely clustered codimension-two points
(points in Γ –Re space) at which pairs of such modes simultaneously bifurcate. In the
neighbourhood of such points in parameter space, mixed-modes and possibly more
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complex structures also bifurcate (Guckenheimer & Holmes 1997; Kuznetsov 1998).
Even though at onset these are typically unstable (they bifurcate supercritically from
a basic state which is already unstable), they compete, interact and some become
stable; see Lopez et al. (2001) for an example restricted to the axisymmetric subspace
and the corresponding experimental results in Stevens, Lopez & Cantwell (1999) and
three-dimensional computations in Blackburn & Lopez (2002). In order to avoid as
far as possible the complications due to the multiple mode interactions encountered
for Γ � 2.5, in this present study we fix Γ = 1.72, which from the results of Gelfgat
et al. (2001), the mode interaction is from a double Hopf bifurcation from the stable
basic state and other mode interactions are further away in Γ –Re space. Of course,
such complications are inevitable, and we shall show that the mode interaction from
the double Hopf at Γ ≈ 1.6 (Marques, Lopez & Shen 2002) plays a major role in the
transition to complex dynamics as Re is increased for Γ = 1.72.

The only symmetry in our problem is the invariance to rotations about the axis. The
transition process involves rotating and modulated rotating waves as this symmetry is
broken. Such states have been observed experimentally in many diverse problems (e.g.
Coles 1965; Hide & Titman 1967; Gorman & Swinney 1982). Dynamical systems
theory, and in particular the theory on the bifurcations from rotating waves in
symmetric systems (e.g. Rand 1982; Golubitsky, LeBlanc & Melbourne 2000) provides
a valuable framework in which to describe and understand the transition process.
The theory has been very useful in describing the transition processes in, for example,
cellular flames (Bayliss, Matkowsky & Riecke 1994; Gorman et al. 1994, 1996) and
rotating flows (Gorman, Swinney & Rand 1982). We use this theoretical framework to
help clarify the various stages in the transition process from steady axisymmetric flow
to flow in which all the symmetries have been broken and the flow has three distinct
time scales that differ from one another by about one order of magnitude. The slowest
time scale is associated with the underlying precession of the non-axisymmertic flow,
the fastest time scale is a modulation of the precession and the third intermediate
time scale appears to be due to separation of the cylinder wall boundary layer. At the
highest Reynolds numbers considered, we find bursting dynamics at the intermediate
time scale with the fast modulations dominating in between the bursts.

2. Navier–Stokes equations and the numerical scheme
We consider an incompressible flow confined in a cylinder of radius R and height H ,

driven by the constant rotation of the bottom endwall at Ω rad s−1. The system is non-
dimensionalized using R as the length scale and 1/Ω as the time scale. The equations
governing the flow are the Navier–Stokes equations together with initial and boundary
conditions. In cylindrical coordinates, (r, θ, z), we denote the non-dimensional velocity
vector and pressure by u = (u, v, w) and p, respectively. The system is governed by
two non-dimensional parameters, one geometric and one dynamic:

aspect ratio: Γ = H/R,

Reynolds number: Re = ΩR2/ν,

where ν is the kinematic viscosity of the fluid. Note that the viscous time, R2/ν,
non-dimensionalized by 1/Ω , is Re.

The governing equations are the (non-dimensional) Navier–Stokes equations

∂u/∂t + (u · ∇)u = −∇p + ∇2u/Re, ∇ · u = 0, (2.1)
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subject to no-slip boundary conditions. Specifically, u = v = w =0 on all stationary
boundaries, i.e. at the outer cylinder, r = 1, and the top endwall z = Γ . On the rotating
bottom endwall at z = 0, u =w = 0 and v = r .

To solve (2.1), a stiffly stable semi-implicit second-order projection scheme is used,
where the linear terms are treated implicitly while the nonlinear terms are explicit (see
Lopez & Shen 1998; Lopez, Marques & Shen 2002b, for more details). For the space
variables, we use a Legendre–Fourier approximation. More precisely, the azimuthal
direction is discretized using a Fourier expansion with Nθ +1 modes corresponding to
azimuthal wavenumbers m =0, 1, 2, . . . , Nθ , while the axial and radial directions are
discretized with a Legendre expansion. The code has already been used to study flows
in the present geometry (Marques & Lopez 2001; Marques et al. 2002; Lopez et al.
2002a; Lopez & Marques 2004), and these papers give further details on accuracy
and resolution. The results presented here have 48 Legendre modes in the radial and
axial directions, and Nθ = 15. The time step used is δt = 5 × 10−3.

3. Basic flow state and its Hopf bifurcations
The rotation of the endwall introduces angular momentum into the flow. For any

non-zero rotation of the endwall (i.e. Re �= 0), the boundary-layer flow has a radial
flow component which advects angular momentum radially outward; the presence of
the stationary cylinder turns this flow into the interior and a meridional overturning
swirling flow is established which redistributes the angular momentum introduced
at the rotating endwall throughout the interior of the cylinder (see figure 1). For
sufficiently large Reynolds number (Re ∼ 1000), the meridional flow brings enough
angular momentum in toward the axis so as to establish a central vortex flow. As Re

is increased further, a greater amount of angular momentum is advected toward the
axis, resulting in a vortex flow on the axis with a centrifugally unstable distribution
of angular momentum. The flow redistributes this angular momentum by establishing
a large radial flow out from the axis. By Re = 1500, this radial outflow is sufficiently
strong to stagnate the axial flow and a recirculation zone (vortex breakdown bubble)
is formed on the axis. With increasing Re, this process occurs over a shorter axial
distance down from the top stationary endwall, with the effect of squeezing the near-
spherical bubble at lower Re into a cup-shaped bubble (Re ∼ 2000), and ultimately
squeezing it out altogether. For these higher Re ∼ 2500, there is flow down the entire
length of the axis, but there is still a very strong radial outflow advecting angular
momentum away from the axis, and the axial flow near the axis downstream of this
is very slow. The flow shown in figure 1 at Re = 2650 is of the steady axisymmetric
basic state at a Reynolds number slightly below that at which the basic state becomes
unstable, for Γ =1.72. Throughout this study, we shall keep Γ = 1.72 and study the
instabilities of the flow as Re is increased. Before doing so, it is instructive to review
how the symmetry of the problem affects its instabilities and bifurcations.

The system is SO(2) equivariant. The action of SO(2) on the velocity field is that
of a rotation Rα through angle α ∈ (0, 2π]:

Rαu(x) = Rα(u, v, w)(r, θ, z, t) = (u, v, w)(r, θ + α, z, t). (3.1)

For an axisymmetric flow field with velocity ua , Rαua = ua . The generic codimension-
one local bifurcations that such a flow can suffer are the saddle-node bifurcation and
the Hopf bifurcation. Saddle-node bifurcations of axisymmetric flows are only possible
if the bifurcation preserves the symmetry (Crawford & Knobloch 1991; Knobloch
1994, 1996; Iooss & Adelmeyer 1998). Saddle-node bifurcations of the basic state
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v: 500 1000 1500 2000 2500 2650

w: 500 1000 1500 2000 2500 2650

ψ: 500 1000 1500 2000 2500 2650

Figure 1. Contours of velocity components u, v and w, and streamfunction ψ for the
axisymmetric steady-state solution at various Re as indicated; solid (broken) contours are
positive (negative) with values ±0.16(i/20)2, i ∈ [1, 20], for u and w, and (i/20)2 for v; for
ψ , the black contours, in the interval [−0.01, 0), indicate counterclockwise circulation and the
grey contours in the interval (0, 2 × 10−4], indicate clockwise recirculation zones. The left-hand
boundary is the axis and the bottom is the rotating endwall.

have not been observed experimentally (either in the laboratory or in computations).
The linear stability analysis of the axisymmetric basic state to general three-
dimensional disturbances (Gelfgat et al. 2001) showed that at least for Γ ∈ [1, 3.5],
all primary instabilities of the axisymmetric basic state are Hopf bifurcations at
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which stable time-periodic solutions are created. For Γ ∈ (1.63, 2.76), Gelfgat et al.
(2001) showed that the periodic solutions are axisymmetric limit cycles, i.e. the Hopf
bifurcation preserves the SO(2) symmetry, and in an earlier study Gelfgat et al. (1996)
showed that this Hopf bifurcation is supercritical, while for Γ < 1.63 and Γ > 2.76
the Hopf bifurcation breaks the SO(2) symmetry and a stable rotating wave with
azimuthal wavenumber m �= 0 is created.

Rotating waves are periodic solutions which are special in the sense that the time-
dependence is a drift in the direction of the SO(2) symmetry, i.e. a precession, and
are better described as relative equilibria. The velocity field of a rotating wave urw
in a system with SO(2) symmetry has the following characteristics:

urw(r, θ, z, t) = urw(r, θ, z, t + T ),

urw(r, θ, z, t) = urw(r, θ + 2π/m, z, t),

urw(r, θ, z, t) = R−φurw(r, θ, z, t + T φ/2π).


 (3.2)

The Hopf bifurcation from the basic state leading to the rotating wave breaks the
continuous SO(2) symmetry, and the rotating wave possesses the discrete cyclic
symmetry Zm = {R2π, R2π/2, . . . , R2π/m}. In a frame-of-reference that rotates with
period T , the rotating wave is stationary, hence the terminology ‘relative equilibrium’.

Near a relative equilibrium the drift dynamics associated with the precession is
trivial and decouples from the dynamics orthogonal to the relative equilibrium.
As a result, the bifurcations from relative equilibria can be analysed in two steps,
describing first the bifurcations associated to the orthogonal dynamics, and then
adding the corresponding drift along the rotating wave (Krupa 1990).

To characterize the flow states computed, we use both a local measure and a global
measure. The need for both a local and global measure will become apparent as
we analyse the results in subsequent sections. The local measure is the value of a
component of the velocity at a point (owing to the flow incompressibility, the choice
of velocity component and the point at which it is measured is quite arbitrary, as
long as the point is not on the axis or the solid walls). We shall monitor U , the radial
component of the velocity at the point (r, θ, z) = (0.5, 0, 0.5Γ ). For global measures,
we use modal energies:

Em =
1

2

∫ z=Γ

z=0

∫ r=1

r=0

um · um r dr dz, (3.3)

where um is the mth Fourier mode of the velocity field. For an axisymmetric solution,
only E0 is non-zero, and for a rotating wave with Zm spatial symmetry, only Ekm are
non-zero (k = 0, 1, 2, . . .).

3.1. Axisymmetric limit cycles

For Γ about 1.72, the basic state loses stability via symmetry-preserving Hopf
bifurcations as Re is increased beyond about 2660. The linear stability analysis of
Gelfgat et al. (2001) predicts that the frequency of the bifurcating limit cycle changes
discontinuously with Γ in this region of parameter space, indicating a codimension-
two double Hopf bifurcation at about Γ = 1.725 and Re =2655. For Γ < 1.725, the
limit cycle LC1 is the first to bifurcate from the basic state as Re is increased and
for Γ > 1.725, LC2 is the primary mode. Near onset, both limit cycles show periodic
pulsations of the vortex breakdown region (the region where flow on the central
vortex near the top stationary wall makes a sudden radial expansion, as described for
the basic state; see figure 1). For LC1, these pulsations are of large amplitude and
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Figure 2. Variation with Re of (a) the periods T , (b) 〈E0〉 and (c) 
E0, of the axisymmetric
limit cycle states LC1, LC2 and LC3, as well the period-doubled LC3PD. Solid symbols are
computed solutions which are stable to three-dimensional perturbations and open symbols are
computed solutions for which modes with m �= 0 are growing.

short period compared with the pulsations of LC2. Their character is of the same
pulsation type as the primary Hopf mode observed at Γ = 2.5 (Lopez & Perry 1992;
Stevens et al. 1999; Lopez et al. 2001). The frequencies of the observed limit cycles
are in very good agreement with the Hopf frequencies predicted by the linear stability
analysis. Figure 2 shows how the periods T , 〈E0〉 (the mean E0 over one period), and

E0 (the amplitude of the oscillation in E0) vary with Re for the axisymmetric limit
cycles. As Re is increased, the amplitude of the oscillations increases and the nature
of the pulsations changes so that a recirculation zone propagates down the axis every
period following the expansion phase of the pulsation for both LC1 and LC2 (see
figures 3 and 4 for contours of the axial velocity for LC1 and LC2 at Re =4000).
This wave travelling down the axis is reminiscent of the second Hopf mode observed
both experimentally and numerically at Γ =2.5 (Lopez & Perry 1992; Stevens et al.
1999; Lopez et al. 2001; Blackburn & Lopez 2002).

By solving the three-dimensional Navier–Stokes equations with initial conditions
that include finite perturbations in the m =1 Fourier mode, and monitoring Em for
m �= 0, we have found that both LC1 and LC2 remain stable to quite large Re. LC1
is stable for Re � 5500; for slightly larger Re, the non-axisymmetric components
grow slowly. The computations indicate that LC1 loses stability via a symmetry-
breaking Neimark–Sacker bifurcation (Hopf bifurcation of limit cycles), and that
the resulting quasi-periodic state is itself unstable, indicating that the bifurcation is
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Figure 3. Contours of w at different times t over one period T ≈ 32, as indicated, for LC1 at
Re = 4000; solid (broken) contours are positive (negative) with values ±0.16(i/20)2, i ∈ [1, 20].
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Figure 4. Contours of w at different times t over one period T ≈ 22, as indicated, for LC2 at
Re = 4000; solid (broken) contours are positive (negative) with values ±0.16(i/20)2, i ∈ [1, 20].

subcritical. After several viscous times, the flow evolves to a non-axisymmetric state
which we describe later. We could continue the unstable LC1 solution branch to
higher Re by restricting the computations to the axisymmetric subspace (by solving
the axisymmetric Navier–Stokes equations), and study the complex dynamics the
axisymmetric flow experiences with increasing Re, such as was done by Sorensen &
Christensen (1995) for Γ = 2.0.

The LC2 branch loses stability at lower Re ≈ 4400. This bifurcation is a saddle-node
of limit cycles. Above Re =4400, there is a jump to a different branch of axisymmetric
limit cycles, LC3, which can be followed to both larger and smaller Re. Following
this branch to smaller Re, it also suffers a saddle-node of limit cycles bifurcation
at about Re = 4265 and there is a jump back to the LC2 branch, giving the typical
hysteresis loop associated with saddle-node bifurcations. The characteristics of the
LC3 branch are similar to those of LC1 and LC2 at comparable Re (see figures 3 and
4), consisting of a recirculation zone that forms on the axis just downstream of the
breakdown region and travels at a fairly constant speed down the axis; as it reaches
the rotating endwall, a new recirculation zone forms and the whole process repeats.
Figure 5 shows contours of the axial velocity over one period, illustrating this process
at Re = 5800.

At Re ≈ 5840, LC3 undergoes a period-doubling bifurcation to LC3PD. The
amplitudes of the limit cycles are continuous across this bifurcation, but the period
suddenly doubles. The flow field characteristics of the period-doubled solution are
very similar to those of LC3 (compare figures 5 and 6). Figure 7 shows time-series of
E0 for LC3 at Re = 5800 (solid curve) and for LC3PD at Re =6000 (dashed curve). At
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189 12 153 6

Figure 5. Contours of w at different times t over one period T ≈ 17.91, as indicated, for
LC3 at Re = 5800; solid (broken) contours are positive (negative) with values ±0.16(i/20)2,
i ∈ [1, 20].

3 6 9 12 15 18

21 24 27 30 33 36

Figure 6. Contours of w at different times t over one period T ≈ 35.86, as indicated, for
LC3PD at Re = 6000; solid (broken) contours are positive (negative) with values ±0.16(i/20)2,
i ∈ [1, 20].
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Figure 7. Temporal variation of E0 for LC3 at Re = 5800 (solid curve, with period
T ≈ 17.91) and LC3PD at Re = 6000 (dashed curve, with period T ≈ 35.86).
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about Re = 6050, LC3PD becomes unstable to non-axisymmetric perturbations. This
appears to be via a symmetry-breaking Neimark–Sacker bifurcation as we are able to
continue the unstable LC3PD branch to higher Re by restriction to the axisymmetric
subspace.

3.2. Rotating waves

When LC1 and LC3PD become unstable to non-axisymmetric perturbations, the
flows evolve to three-dimensional states which we shall describe later. By continuing
these states to lower Re, we have found a branch of rotating waves with azimuthal
wavenumber m =2, RW2. This branch of RW2 loses stability for Re < 3425; for
smaller Re, the flow evolves to the LC2 state. The loss of stability of RW2 as Re

is reduced is via a Hopf bifurcation from the rotating wave; the bifurcation is a
Hopf bifurcation from a (relative) equilibrium rather than a Neimark–Sacker (Hopf
bifurcation for maps) bifurcation because the time-periodic state RW2 is a relative
equilibrium and so the time-periodicity is simply a drift in the direction of the SO(2)
symmetry, i.e. a uniform precession, which is decoupled from the dynamics orthogonal
to the group orbit (Rand 1982; Renardy 1982; Krupa 1990; Golubitsky et al. 2000).
The quasi-periodic state that emerges at the bifurcation of RW2 is unstable, and we
have no details about it. The unstable RW2 continues to exist to lower Re. From the
linear stability analysis of Gelfgat et al. (2001), for Γ = 1.72, RW2 bifurcates from
the basic state (which is already unstable to both LC1 and LC2) at about Re = 2800,
and the Hopf frequency is a very small negative number (see their figures 1 and 2)
indicating that at onset, RW2 has a very slow retrograde precession with respect to
the sense of rotation of the endwall. At Re ≈ 3425, the stable RW2 is precessing very
slowly prograde with the endwall. Presumably, for Re between 2800 and 3400, the
sense of precession of the unstable RW2 changes.

Figure 8 shows the variation with Re of the mean modal energies 〈E0〉, 〈E1〉 and 〈E2〉
and the precession and modulation periods of RW2 and various modulated rotating
waves that result from subsequent bifurcations (these are discuss in detail later). The
precession period T corresponds to the time it takes for the RW2 structure to precess
through angle 2π. Since RW2 has spatial symmetry Z2 = {1, Rπ}, an observable such
as a velocity component at a point has periodicity T/2. Furthermore, the time series
of such a velocity component is not harmonic. This does not mean that RW2 has a
non-uniform precession. The time series would be harmonic if RW2 were completely
described by just the m =0 and m =2 Fourier modes, but this is the case only at
the Hopf bifurcation point where RW2 is spawned. The non-harmonicity is due to
the nonlinear spatial structure of RW2, as can be readily seen in figure 9. This
figure, which shows contours of the radial velocity at various heights for Re = 4500,
also illustrates the Z2 symmetry of RW2. These contours rotate rigidly in space in
the counterclockwise direction (prograde with the rotating endwall) at a constant
rate θ̇ = 2π/T . Figure 10 shows contours of the axial velocity at various angles
θ ∈ [0, π); the contours are repeated for θ ∈ [π, 2π) because of the Z2 symmetry.
The contours of u at z = 0.8Γ in figure 9 illustrate the coupling between the strong
radial outflow associated with the vortex breakdown and the boundary-layer flow
near the cylinder wall. The contours in figure 10 also illustrate the activity in the
corner region (r = 1, z = Γ ), where the sidewall boundary layer turns to form the
stationary endwall layer; there is a pair (owing to the Z2 symmetry) of small spiral
separation zones on the stationary top endwall (most clearly seen in the contours
at θ = 3π/6).
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Figure 8. Variation with Re of the mean modal energies 〈E0〉, 〈E1〉 and 〈E2〉 and the
precession and modulation periods, T and Tm, of RW2 and various modulated rotating waves
(as labelled) that result from subsequent bifurcations.

3.3. Relative periodic orbits and modulated rotating waves

As RW2 is continued to higher Re, it becomes unstable at about Re = 4610. An
m = 1 Fourier mode grows and the solution is a quasi-periodic modulated rotating
wave. Figure 8 shows the variation with Re of 〈Ei〉, i =0, 1, 2 for the modulated
rotating wave, showing the growth of 〈E1〉 from zero at the instability of RW2;
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0.3Γ 0.6Γ 0.8Γ 0.9Γ

Figure 9. Contours of u at different heights z, as indicated, for RW2 at Re = 4500; solid
(broken) contours are positive (negative) with values ±0.16(i/20)2, i ∈ [1, 20]. The sense of
precession is counterclockwise (the same sense as the rotation of the bottom endwall).
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Figure 10. Contours of w at different azimuthal angles, as indicated, at one instant in time, for
RW2 at Re =4500; solid (broken) contours are positive (negative) with values ±0.16(i/20)2,
i ∈ [1, 20].

the variations of 〈E0〉 and 〈E2〉 for the modulated rotating wave are continuous
with those of RW2 across this instability. There is also a destabilization and re-
stabilization of the modulated rotating wave to a different modulated rotating wave
for Re ∈ (5080, 5310).

The instability of RW2 could be interpreted as a Neimark–Sacker bifurcation, i.e. a
Hopf bifurcation from the time-periodic RW2, but since RW2 is a rotating wave, it is
more appropriate to consider this as a Hopf bifurcation from the (relative) equilibrium
(Krupa 1990). In this setting, the bifurcating quasi-periodic solution is a modulated
rotating wave which is a (relative) periodic orbit in the precessing frame of reference
in which the rotating wave is stationary. Rand (1982) has classified the modulated
rotating waves that bifurcate via Hopf bifurcations from rotating waves in systems
with SO(2) symmetry in terms of the spatial symmetries of the rotating wave and of
the modulated rotating wave. Golubitsky et al. (2000) also use the spatio-temporal
symmetry of the modulated rotating wave to complete the classification.

As we have already mentioned, RW2 has spatial symmetry Z2. The Hopf bifurcation
breaks this symmetry, introducing an m =1 azimuthal wavenumber and so the
bifurcating modulated rotating wave only has trivial spatial symmetry, the flow
is periodic in the azimuthal direction. However, from a close examination of the
velocity field (see figure 11a, showing contours of the axial velocity at z =0.8Γ of
the modulated rotating wave at Re =4800 over one modulation period), we find
that it possesses a non-trivial spatio-temporal symmetry. From the theory of Krupa
(1990), the appropriate way to investigate such flows is to examine the dynamics
normal to the group orbit (for us this means considering the dynamics in a rotating
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Figure 11. Contours of w at z = 0.8Γ at times as indicated over one modulation period for
(a) MRW211 at Re = 4800 and (b) MRW210 at Re = 5200.

frame-of-reference in which the rotating wave is stationary and the modulated rotating
wave is periodic). The contours in figure 11 are drawn in the stationary frame, and to
eliminate the (counterclockwise) precession, contour plots at time t from a reference
plot should be rotated clockwise by angle 2πt/T , where the precession period T

varies with Re. The modulation period, Tm, is about a factor of 20 times smaller
than T (figure 8 shows the variation of T and Tm with Re). The velocity in the
appropriate rotating frame (i.e. rotating clockwise with period T (Re)), denoted ũ, has
the spatio-temporal symmetry:

Rπũ(r, θ, z, t) = ũ(r, θ + π, z, t) = ũ(r, θ, z, t + Tm/2). (3.4)

This is analogous to the half-period-flip spatio-temporal symmetry associated with
the familiar Kármán vortex street (e.g. Barkley & Henderson 1996; Marques, Lopez
& Blackburn 2004; Blackburn, Marques & Lopez 2005), except that instead of a flip
(Z2 generated by a spatial reflection), we have Z2 generated by a half-period spatial
rotation Rπ. This spatio-temporal symmetry also gives a Z2 group consisting of the
identity and the combined operation of a temporal evolution through Tm/2 together
with Rπ, and we denote it Z̃2 to distinguish it from the spatial Z2. Since the resulting
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Figure 12. Time series of (i) E0 (solid line), E1 (dashed line), E2 (dot-dashed line) and (ii) U
for (a) MRW211 at Re = 4800 and (b) MRW210 at Re = 5200.

modulated rotating wave has this non-trivial spatio-temporal symmetry, we denote
it MRW211. The integer 2 denotes the spatial Z2 symmetry of the rotating wave
from which it bifurcates, and the first 1 denotes the (trivial) Z1 spatial symmetry of
MRW211. These are two of the three integers that Golubitsky et al. (2000) used to
characterize the modulated rotating waves, and are related to the two integers used
by Rand (1982). The second 1 indicates that the modulated rotating wave has Z̃2

spatio-temporal symmetry; Golubitsky et al. (2000) use an integer α which for our
MRW211 has the value α =1 (they consider more general cases where the spatio-
temporal symmetry of the modulated rotating waves can be more complicated than
the Z̃2 in MRW211, but later we shall encounter one with α =2).

Figure 8 shows that for Re ∈ (5080, 5315), MRW211 is unstable to a different
type of modulated rotating wave. No new frequencies (either spatial or temporal)
are introduced, and the bifurcations of MRW211 at either end of this range in
Re are not saddle nodes. The contours of w at z = 0.8Γ in figure 11(b) indicate
that this modulated rotating wave is not invariant to the Z̃2 symmetry (3.4). In
the nomenclature of Golubitsky et al. (2000), it has α = 0, indicating no spatio-
temporal symmetry. We shall refer to this state as MRW210 (the 2 due to the spatial
Z2 symmetry of the underlying rotating wave, the 1 due to the trivial spatial Z1

symmetry of MRW210, and the 0 due to its lack of spatio-temporal symmetry).
Figure 12 shows time series of E0, E1, E2 and U for MRW211 and MRW210.

The U time series are quasi-periodic, with a slow time scale corresponding to the



Transitions in an enclosed swirling flow 337

3.81

22.86 26.67 30.48 34.29 38.10

7.62 11.43 15.24 19.05

Figure 13. Contours of w at z = 0.8Γ at times as indicated over approximately one
modulation period, Tm = 38.12, for MRW222 at Re = 6000.

SO(2) drift (the underlying precession of the rotating wave) and a fast time scale
corresponding to the modulation. Physically, the modulation is a wobbling of the
vortex breakdown region, which is coupled to undulations in the sidewall boundary
layer. The Ei time series are periodic (since both MRW211 and MRW210 are relative
periodic orbits), and their periods are related to the modulation period Tm. The period
Tm is the time it takes the modulated rotating wave to repeat in a frame of reference
rotating with the precession period. From figure 11(a), Tm ≈ 26.35 for MRW211, but
the time series of Ei in figure 12(a) show periodicity of Tm/2. This is a consequence
of the Z̃2 symmetry; the spatial structure of the velocity at times Tm/2 apart are
identical, except for a rotation through angle πTm/T which does not affect the global
measures Ei but does affect the local measure U . Hence, the fast time scale in the
time series of U is Tm.

For MRW210, Z̃2 symmetry is broken (see figure 11b) and so the time series of Ei

(figure 12b) have periodicity Tm. The time series of U for MRW210 has fast time scale
Tm and the slow time scale is the precession period T . In contrast, for MRW211, the
slow time scale in the time series of U is T/2 as a consequence of the Z̃2 symmetry.

From figure 8, we see that on increasing Re beyond about 5500, MRW211 suffers
a saddle-node bifurcation (of relative periodic orbits). For Re slightly beyond the
saddle-node bifurcation, the flow has very long transients (several viscous times,
which is typical near saddle-node bifurcations), but eventually it evolves to another
modulated rotating wave which is distinguished from either MRW211 or MRW210
by its spatial Z2 symmetry, such that

u(r, θ, z, t) = u(r, θ + π, z, t). (3.5)

Contour plots of this new state are shown in figure 13. These contours also show that
this state has a spatio-temporal symmetry that is different from Z̃2. In a precessing
frame-of-reference, it has invariance

ũ(r, θ, z, t + Tm/2) = ũ(r, θ, z, t) = (Rπ)
2ũ(r, θ, z, t). (3.6)

The (Rπ)
2 leads to α = 2 in the nomenclature of Golubitsky et al. (2000) for classifying

the spatio-temporal symmetry of modulated rotating waves. The temporal sequence
in figure 13 shows that the modulation period is Tm; following one of the pair of
maxima shows that it rotates through angle −π in time Tm/2 (modulo the small
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Figure 14. Contours of w at z = 0.8Γ at times as indicated over approximately one
modulation period, Tm = 38.52, for MRW212 at Re = 6500.

precession πTm/T ). This modulated rotating wave is related to the underlying RW2
with spatial Z2 symmetry, it has spatial Z2 symmetry and spatio-temporal symmetry
(3.6) with α = 2, and we denote it MRW222.

Continuing MRW222 to smaller Re, we find that it becomes unstable to an m = 1
Fourier mode at about Re = 5475, at which point the flow evolves to MRW211. This
delineates a hysteresis loop, with the saddle-node bifurcation of MRW211 at about
Re = 5495 at one end and the subcritical Hopf-type bifurcation of MRW222 at about
Re = 5475 at the other end.

Since the stable modulated rotating waves for Re ∈ (4610, 5475) all have m = 1
Fourier components, it is possible to explore the unstable states from which they
bifurcate in this range of Re by restricting the dynamics to an even subspace
(computationally, this is done simply by setting all odd Fourier modes identically
to zero). This allows us to continue the unstable RW2 state for Re > 4210 beyond
its Hopf bifurcation that spawns MRW211, and for Re < 5475 we can continue the
unstable MRW222. The unstable RW2 and the unstable MRW222 are not simply
connected by a single bifurcation in the even subspace. Instead, there is a complicated
competition between the unstable MRW222 and another modulated rotating wave
which bifurcates from the unstable RW2. We do not present the details as it is
probable that the complicated dynamics are an artefact of the restriction to the even
subspace. The point, however, is that the branch of stable MRW222 bifurcates (in a
non-simple fashion) from the branch of RW2.

Continuing the stable MRW222 to higher Re, it suffers a symmetry-breaking
bifurcation at about Re = 6350, spawning another modulated rotating wave where
the spatial Z2 symmetry is broken owing to the growth of an m =1 Fourier mode,
but the spatio-temporal symmetry (3.6) is preserved. Figure 14 shows contours of
the axial velocity at z =0.8Γ over one modulation period, illustrating the trivial Z1

spatial symmetry and the spatio-temporal symmetry (3.6) of this state at Re = 6500,
which we denote MRW212.

Both MRW222 and MRW212 are periodic states in a frame-of-reference precessing
at angular rate θ̇ = 2π/T ; owing to the Z2 symmetry, the U time series of MRW222 is
quasi-periodic with periods T/2 and Tm, whereas that of MRW212 is quasi-periodic
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Figure 15. Time series of (i) E0 (solid line), E1 (dashed line), E2 (dot-dashed line) and (ii) U
for (a) MRW222 at Re = 6000 and (b) MRW212 at Re = 6500.

with periods T and Tm; and yet, since both are invariant to the spatio-temporal
symmetry (3.6), their Ei time series are Tm/2 periodic (see figure 15).

At about Re = 6830, MRW212 becomes unstable (see figure 8) at a bifurcation at
which a new frequency is introduced; we shall denote this new state T3 as it has three
distinct time scales associated with it, as we shall describe presently. Figure 16 shows
power spectral densities of E2 (the time series used to obtain these were of the order
of one viscous time long, and the flows had been evolved for several viscous times to
allow for transients to diminish), of MRW222, MRW212 and T3 at various Re. By
using a global measure (E2) rather than a local measure (such as U ), the spectra do
not contain any peaks associated with the precession period T (which would introduce
a very low frequency peak at 1/T ∼ 10−3 as well as linear combinations between it
and the other main peaks, leading to a very messy spectrum). The E2-spectra of
MRW222 and MRW212 have a single peak at 2/Tm ≈ 0.052, plus harmonics (below
we give an explanation as to why we associate the peak at 0.052 with Tm/2); this
peak is also present in the spectra of T3. At Re = 6850, the E2-spectra of T3 consists
of two main peaks, one at 2/Tm ≈ 0.052 and another at 1/T3 ≈ 0.008, plus their linear
combinations. At this Re, near the onset of T3, we may regard T3 as a relative
two-torus, i.e. a two-frequency (Tm and T3) quasi-periodic state when viewed in a
frame-of-reference rotating with period T .
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Figure 16. Power spectral densities of E2 for (a) MRW222 at Re = 6000, (b) MRW212 at
Re = 6500, (c) T3 at Re = 6850, (d) T3 at Re = 6900, (e) T3 at Re = 6950 and (f ) T3 at
Re = 7000.

As Re is increased beyond 6850, the flow becomes more intermittent and the
description of T3 as a relative two-torus appears to be inadequate. The E2-spectra at
the higher Re still show peaks at 2/Tm and 1/T3, but they are quite broadband owing
to the intermittent nature of the flow.

Figure 17 shows parts of the time series used to compute the spectra in figure 16
for T3 at Re =7000. The low-frequency modulation that is apparent in the time series
of U (it is much more apparent when the time series is several viscous times long)
corresponds to the underlying precession period T ≈ 1000. Figure 8 shows that this
period is consistent with the overall variation of T with Re from RW2 through the
various modulated rotating waves to T3. From the time series of the modal energies,
the T3 ≈ 125 oscillations with the Tm/2 ≈ 19 modulations riding on top of them are
apparent. The E1 and E2 time series are out of phase at both the T3 and Tm/2 time
scales, and their magnitudes are comparable, indicating significant modal competition
leading to the bursting-type dynamics.

Figure 18 shows contours of w at z = 0.8Γ for T3 over approximately one
modulation period, Tm. Note that this figure is not independent of the time origin
since the flow is not a relative periodic orbit. Nevertheless, it allows us to make a
number of observations. By comparing this figure with figure 14, we see that there
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Figure 17. Time series of U , E0, E1 and E2 for T3 at Re = 7000.

is a similar precession of the structures at angular rate θ̇ = 2π/Tm. Furthermore, that
comparison suggests that the T3 state, which has strictly broken the spatio-temporal
symmetry (3.6) of MRW212, nevertheless shows remnants of it; the contours of T3 at
times Tm/2 apart are relatively small distortions of each other, whereas for MRW212
they are the same, modulo a small rotation 2πTm/T . This shows up in the strong
peak at frequency 2/Tm and its harmonics in the spectra of T3.

While it is difficult to ascribe a spatial characteristic associated with the new
frequency 1/T3, it may be associated to the separation of the sidewall boundary layer
near the corner (r = 1, z =Γ ), which is becoming more prominent at these higher Re.
Figure 19 shows contours of T3 in the θ = 0 plane at the same times as those in
figure 18, where the sidewall boundary-layer separation is evident.

We have seen that the T3 state has broken all spatial and spatio-temporal
symmetries, and its temporal characteristics are complex, consisting of aperiodic
intermittent bursts. These are characteristics of transitions to so-called weak
turbulence – spatio-temporal complexity without very energetic small scales. Figure 20
shows 〈Em〉, the modal energies averaged over the precession period T , for MRW222,
MRW212 and T3 at various Re. Since MRW222 has Z2 symmetry, only the energy
in the even modes are non-zero. MRW212 has broken the Z2 symmetry, and so the
odd modes are also energetic. The even energies in MRW212 are smaller than those
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Figure 18. Contours of w at z = 0.8Γ at times as indicated over approximately one
modulation period, Tm =38.60, for T3 at Re = 7000.
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Figure 19. Contours of w at θ = 0 at times as indicated over approximately one modulation
period, Tm = 38.60, for T3 at Re = 7000.

in MRW222 as a consequence of the growth in the odd energies. For T3, the modal
energy spectra is not qualitatively different from that for MRW212; the odd energies
have grown, and for small m the even energies have decreased in compensation, but for
large m all energies have grown. In all cases, for m � 10 there is a consistent spectral
convergence in the tail of the spectra, indicating sufficient numerical resolution.
Comparing the contours of T3 at Re = 7000 in figure 19 with those of RW2 at
Re = 4500 in figure 10, we see that no new significant small-scale features are evident
in (r, z). The smallest scale feature continues to be the boundary layer on the rotating
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endwall, whose thickness scales with Re−0.5, and this is well-resolved with the present
resolution at the largest Re = 7000 considered.

4. Summary and conclusions
The transition from steady axisymmetric flow to flow with spatio-temporal

complexity in an enclosed cylinder driven by the constant rotation of an endwall
has been investigated numerically. The system is governed by two parameters, the
Reynolds number Re and the aspect ratio Γ . The investigation has been at fixed
Γ = 1.72 where linear stability analysis (Gelfgat et al. 2001) predicts that the first
bifurcation of the steady axisymmetric flow preserves the symmetry, and that in the
neighbourhood of this value of Γ , there is competition between two axisymmetric
time-periodic modes. Our nonlinear analysis finds both of these axisymmetric limit
cycles, LC1 and LC2, bifurcate at about Re = 2660 (LC1 at Re = 2662.2 and LC2
at Re =2665.5) with periods in excellent agreement with the linear stability analysis
results. We find both LC1 and LC2 to be stable to quite large Re; Re ≈ 5500 for LC1
where it becomes unstable to a symmetry-breaking Hopf bifurcation, and Re ≈ 4400
for LC2 where it suffers a saddle-node bifurcation which is one end of a hysteresis
loop with another axisymmetric limit cycle LC3. LC3 is born at a saddle-node
bifurcation at Re ≈ 4265 and continues to be stable to Re ≈ 5840 where it suffers a
period-doubling bifurcation that preserves the axisymmetry, and this period-doubled
LC3 is stable to Re ≈ 6050 where it becomes unstable to a symmetry-breaking Hopf
bifurcation.

While all these axisymmetric limit cycle states coexist and are stable to small non-
axisymmetric perturbations, there also coexist a number of stable non-axisymmetric
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states. These non-axisymmetric states can be traced back to Re ≈ 3425 where a
rotating wave RW2 with azimuthal wavenumber m =2 is found to be stable for
Re � 3425. From a re-examination of the linear stability results of Gelfgat et al.
(2001) and the nonlinear results of Marques et al. (2002), it becomes evident that
RW2 is the primary mode that first bifurcates from the axisymmetric steady state as
Re is increased at lower aspect ratio (Γ < 1.63). Marques et al. (2002) studied the
mode competition between RW2 and LC1 in the neighbourhood of a double-Hopf
bifurcation near Γ = 1.63. It is now apparent that the region of coexistence of stable
RW2 and stable LC1 extends to Re > 3425 for Γ = 1.72. Here we have continued
the RW2 branch to higher Re, following its subsequent bifurcations to modulated
rotating waves, and have determined the spatial and spatio-temporal characteristics
of these states. All the bifurcations in the transition sequence are in accord with
the very general considerations of how symmetries affect the bifurcations of rotating
waves (Golubitsky et al. 2000).

For Re > 6050, the only stable states we have found to survive are the non-
axisymmetric modulated rotating waves, and by Re ≈ 7000, these have suffered
symmetry-breaking bifurcations which result in flows with no spatial or spatio-
temporal symmetries and temporal dynamics which consist of three main time scales
that differ from one another by about an order of magnitude. The slowest time scale
(about 1000/Ω) is associated to the precession of the underlying RW2 from which the
flow originates, the fastest time scale (about 40/Ω) is associated to the modulation of
RW2, and the intermediate time scale (about 125/Ω) seems to be associated to the
sidewall boundary-layer separation. The flow consists of bursts at the intermediate
time scale with the fast modulations dominating in between the bursts, and the overall
slow precession superimposed on top of it all. At both the fast and intermediate time
scales, the energies in the m =1 and m =2 azimuthal components of the flow are out
of phase, indicating a strong modal competition and exchange of energies leading to
the intermittent bursting behaviour.

With the coexistence of multiple axisymmetric and non-axisymmetric states that
are stable over an extensive range of Re, which one you observe depends on initial
conditions. In a perfect experiment, this selection is well-defined in terms of the basins
of attraction of the various stable states, but even in the absence of imperfections and
noise, the basins can be riddled and their boundaries fractal, and so small differences
in initial conditions can result in evolutions to different states. We have not addressed
the question of the structure of the basins of attraction in this study. This is a non-
trivial exercise for a partial differential equations systems; but it is a very important
issue as it gives some indication of the robustness (to noise) of the various stable
states, e.g. extraneous noise can drive the system from the basin of one stable state
to that of another. If the noise is large, it can actually change the system dynamics
completely, e.g. via resonances. These issues warrant further investigation.

This work was performed while visiting the Department of Mechanical Engineering,
National University of Singapore. Their hospitality is warmly acknowledged.
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